References

Adler, J., Bessman, M. J., Lehman, I. R., Schachman, H. K., Simms, E. S. \& Kornberg, A. (1958). Fed. Proc. 17, 178.
Chargaff, E. (1950). Experientia 6, 201.
Chargaff, E. (1955). The Nucleic Acids (ed. E. Chargaff \& J. N. Davidson), 1, 307. New York: Academic Press.
Crick, F. H. C. (1957a). (Special Publications.) N.Y. Acad. Sci. 5, 175.
Crick, F. H. C. (1957b). The Chemical Basis of Heredity (ed. W. D. McElroy \& B. Glass), p. 536. Baltimore: The John Hopkins Press.
Crick, F. H. C. \& Watson, J. D. (1954). Proc. Roy. Soc. A, 223, 80.
Donohue, J. (1952). J. Phys. Chem. 56, 502.
Donohue, J. (1956). Proc. Nat. Acad. Sci., Wash. 42, 60. Elliott, A. \& Malcolm, B. R. Proc. Roy. Soc. A. In press.

Furberg, S. (1950). Acta Cryst. 3, 325.
Huber, M. (1957). Acta Cryst. 10, 129.
Langridge, R., Seeds, W. E., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F. \& Hamilton, L. D. (1957). J. Biophys. Biochem. Cytol. 3, 767.

Pauling, L. \& Corey, R. B. (1956). Arch. Biochem. Biophys. 65, 164.
Spencer, M. (1959). Acta Cryst. 12, 59.
Watson, J. D. (1957). The Chemical Basis of Heredity (ed. W. D. McElroy \& B. Glass), p. 552. Baltimore: The John Hopkins Press.
Watson, J. D. \& Crick, F. H. C. (1953). Nature, Lond. 171, 737.
Westheimer, F. H. (1956). Steric Effects in Organic Chemistry (ed. M. S. Newman), p. 529. New York : Wiley.
Wilkins, M. H. F., Seeds, W. E., Stokes, A. R. \& Wilson, H. R. (1953). Nature, Lond. 172, 759.
Woolfson, M. M. (1956). Acta Cryst. 9, 974.

Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 500 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible; and proofs will not generally be submitted to authors. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1959). 12, 71

Calculation of scattering intensity from a cylindrically symmetrical system. By I. M. Stuart, Physics and Engineering Unit, Wool Textile Research Laboratories, Commonwealth Scientific and Industrial Research Organization, The Hermitage, 338 Blaxland Road, Ryde, N.S.W., Australia.
(Received 30 July 1958)
G. Oster \& D. P. Riley (1952) give an expression for the amplitude of scattering F in the equatorial plane by a cylindrically symmetrical system

$$
F=\frac{\int_{0}^{\infty} r G(r) J_{0}(k r) d r}{\int_{0}^{\infty} r G(r) d r}
$$

Here F is normalised to be unity at zero scattering angle and $k=(4 \pi / \lambda) \sin \theta$ where λ is the wavelength of the incident radiation and 2θ is the scattering angle. $G(r) d a$ is the probability that scattering material lies in the element of area $d a$ at distance r from the centre of the equatorial section.

When

$$
\begin{aligned}
G(r) & =\cos ^{2} \frac{m \pi r}{R} & & r<R \\
& =0 & & r \geq R
\end{aligned}
$$

the structure is said to be radially periodic. In this case $2 m$ is the number of 'corrugations' in the distribution of scattering material across a diameter $2 R$ of the equatorial section. If we define a new parameter $p=k R /(2 m \pi)$, we can write

$$
F(p)=\frac{\int_{0}^{2 m \pi} x(1+\cos x) J_{0}(p x) d x}{\int_{0}^{2 m \pi} x(1+\cos x) d x}
$$

We discuss the evaluation of F when $2 m$ is an odd integer, which is the case when there is a whole number of corrugations across a diameter. Oster \& Riley (1952) state that F can be reduced to 'a complicated algebraic expression involving $k, 2 m \pi / R, J_{0}(k R), J_{1}(k R)^{\prime}$, and from this expression appear to have inferred a maximum of F^{2} at $p=1$. The author has been unable to find such an expression; and to calculate F for $0<p<\infty$ three series expansions have been derived, each suitable for calculation on a limited range. Further it can be shown that a maximum of F^{2} occurs near, but not at, $p=1$. For $2 m=7$ this maximum is at $p=1.038$, and the value there of F^{2} exceeds that at $p=1$ by 38%.

We list these three series below, giving a rough guide to their appropriate ranges and the number of terms needed to obtain $\sim 1 \%$ accuracy.
A. A series expansion of $F(p)$, centred on $p=1$ and convergent for all values of p. For 1% accuracy no more than 10 terms are needed in the range $1-1 /(2 m)<p<1+1 /(2 m)$

$$
F=2\left[1-\frac{1}{(m \pi)^{2}}\right]^{-1} \sum_{n=0}^{n=\infty} \frac{\left[m \pi\left(1-p^{2}\right)\right]^{n}}{n!} \cdot \frac{J_{n+2}(2 m \pi)}{2 n+3} .
$$

B. A series expansion of $F(p)$, centred on $p=0$ and convergent for $p<1$. For 1% accuracy we can neglect terms of order p and higher, in the range $0<p<1 /(2 m)$.

$$
\begin{aligned}
F= & \frac{2}{1-p^{2}}\left[1-\frac{1}{(m \pi)^{2}}\right]^{-1} \\
& \times\left\{\frac{J_{1}(2 m \pi p)}{2 m \pi p}-\frac{1}{(2 m \pi)^{2}}\left[1+J_{0}(2 m \pi p)\right.\right. \\
& +\left(\frac{p}{2}\right)^{2}\left\{2\left(1+J_{0}(2 m \pi p)\right)-2 J_{2}(2 m \pi p)\right\} \ldots \\
& +\left(\frac{p}{2}\right)^{n}\left\{{ }^{2 n} C_{n}\left(1+J_{0}(2 m \pi p)\right)-2^{2 n} C_{n-1} J_{2}(2 m \pi p) \cdots\right. \\
& \left.\left.\left.+(-)^{n} J_{2 n}(2 m \pi p)\right\}\right]\right\}
\end{aligned}
$$

C. An expansion asymptotic to F for large values of $p\left(1-p^{2}\right)$.

We give the leading terms of this expansion, these being sufficient to calculate F to $\sim 1 \%$ accuracy in
the ranges $1 /(2 m)<p<1-1 /(2 m) ; 1+1 /(2 m)<p<\infty$

$$
\begin{aligned}
& -\frac{1}{(2 m \pi)^{2}} \cdot \frac{(2 m \pi p)^{-\frac{1}{2}}}{1-p^{2}} \cdot\left(\frac{2}{\pi}\right)^{\frac{1}{2}}\binom{\cos \left(2 m \pi p-\frac{\pi}{4}\right) \cdot\left[1-\frac{9+30 p^{2}+345 p^{4}}{2!\left[16 m \pi p\left(1-p^{2}\right)\right]^{2}}+\ldots\right]}{+\sin \left(2 m \pi p-\frac{\pi}{4}\right) \cdot\left[\frac{1-9 p^{2}}{16 m \pi p\left(1-p^{2}\right)}-\frac{225-315 p^{2}-17325 p^{4}-28,665 p^{6}}{3!\left[16 m \pi p\left(1-p^{2}\right)\right]^{3}}\right]} . \\
& p=k R /(2 m \pi) \text { for } 2 m=7 \text {. }
\end{aligned}
$$

Fig. 1. Plot of scattering intensity against

In an interpretation of the scattering pattern of keratin, R.D.B. Fraser \& T. McRae (Private communication) evaluated F^{2} for $2 m=7$ and p in the range $0 \cdot 15<p<1 \cdot 13$, using the series A and C. The graph of F^{2} in this range is shown in Fig. 1.

Acta Cryst. (1959). 12, 72
The unit-cell dimensions and space group of monoclinic $\mathrm{NiSO}_{\mathbf{4}} . \mathbf{6} \mathrm{H}_{\mathbf{2}} \mathrm{O}$. By D. June Sutor Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 23 September 1958)

Crystals of the green monoclinic hexahydrate of nickel sulphate, which is unstable at room temperature, were obtained by the slow evaporation of a cold mixture of solutions of disodium adenosine triphosphate and nickel sulphate whilst trying to crystallize a heavy atom salt of the nucleotide. The unit-cell dimensions of two different crystals, determined from rotation and Weissenberg photographs, are given in Table 1.

Table 1. Unit-cell dimensions

	Crystal 1	Crystal 2
$a(\AA)$	$9 \cdot 84$	11.58
$b(\AA)$	$7 \cdot 17$	$6 \cdot 09$
$c(\AA)$	$24 \cdot 0$	$23 \cdot 9$
$\beta\left({ }^{\circ}\right)$	97.5	$94 \cdot 0$

The axial ratios of crystal 1 ($1.372: 1: 3 \cdot 347$) agree with those quoted by Groth when the c axis of his crystal is doubled ($1 \cdot 3723: 1: 3 \cdot 3526, \beta=98^{\circ} 15^{\prime}$). Crystal 1 is also isomorphous with the modification of $\mathrm{MgSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ studied by Ide (1938), ($a=10 \cdot 04, b=7 \cdot 15, c=22 \cdot 34 \AA$, $\beta=98^{\circ} 34^{\prime}$, space group given as $C 2 / c$).

Reference

Oster, G. \& Riley, D. P. (1952). Acta Cryst. 5, 272.

