References

- ADLER, J., BESSMAN, M. J., LEHMAN, I. R., SCHACHMAN, H. K., SIMMS, E. S. & KORNBERG, A. (1958). *Fed. Proc.* 17, 178.
- CHARGAFF, E. (1950). Experientia 6, 201.
- CHARGAFF, E. (1955). The Nucleic Acids (ed. E. Chargaff & J. N. Davidson), 1, 307. New York: Academic Press.
- CRICK, F. H. C. (1957a). (Special Publications.) N.Y. Acad. Sci. 5, 175.
- CRICK, F. H. C. (1957b). The Chemical Basis of Heredity (ed. W. D. McElroy & B. Glass), p. 536. Baltimore: The John Hopkins Press.
- CRICK, F. H. C. & WATSON, J. D. (1954). Proc. Roy. Soc. A, 223, 80.
- DONOHUE, J. (1952). J. Phys. Chem. 56, 502.
- DONOHUE, J. (1956). Proc. Nat. Acad. Sci., Wash. 42, 60.
- ELLIOTT, A. & MALCOLM, B. R. Proc. Roy. Soc. A. In press.

- FURBERG, S. (1950). Acta Cryst. 3, 325.
- HUBER, M. (1957). Acta Cryst. 10, 129.
- LANGRIDGE, R., SEEDS, W. E., WILSON, H. R., HOOPER, C. W., WILKINS, M. H. F. & HAMILTON, L. D. (1957). J. Biophys. Biochem. Cytol. 3, 767.
- PAULING, L. & COREY, R. B. (1956). Arch. Biochem. Biophys. 65, 164.
- SPENCER, M. (1959). Acta Cryst. 12, 59.
- WATSON, J. D. (1957). The Chemical Basis of Heredity (ed. W. D. McElroy & B. Glass), p. 552. Baltimore: The John Hopkins Press.
- WATSON, J. D. & CRICK, F. H. C. (1953). Nature, Lond. 171, 737.
- WESTHEIMER, F. H. (1956). Steric Effects in Organic Chemistry (ed. M. S. Newman), p. 529. New York: Wiley.
- WILKINS, M. H. F., SEEDS, W. E., STOKES, A. R. & WILSON, H. R. (1953). Nature, Lond. 172, 759.

Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 500 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible; and proofs will not generally be submitted to authors. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1959). 12, 71

Calculation of scattering intensity from a cylindrically symmetrical system. By I. M. STUART, Physics and Engineering Unit, Wool Textile Research Laboratories, Commonwealth Scientific and Industrial Research Organization. The Hermitage, 338 Blaxland Road, Ryde, N.S.W., Australia.

(Received 30 July 1958)

G. Oster & D. P. Riley (1952) give an expression for the amplitude of scattering F in the equatorial plane by a cylindrically symmetrical system

$$F = \frac{\int_0^\infty rG(r)J_0(kr)dr}{\int_0^\infty rG(r)dr}$$

Here F is normalised to be unity at zero scattering angle and $k = (4\pi/\lambda) \sin \theta$ where λ is the wavelength of the incident radiation and 2θ is the scattering angle. G(r)da is the probability that scattering material lies in the element of area da at distance r from the centre of the equatorial section.

When

$$G(r) = \cos^2 \frac{m\pi r}{R} \qquad r < R$$
$$= 0 \qquad r \ge R$$

the structure is said to be radially periodic. In this case 2m is the number of 'corrugations' in the distribution of scattering material across a diameter 2R of the equatorial section. If we define a new parameter $p = kR/(2m\pi)$, we can write

$$F(p) = \frac{\int_{0}^{2m\pi} x(1+\cos x) J_{0}(px) dx}{\int_{0}^{2m\pi} x(1+\cos x) dx} \cdot$$

We discuss the evaluation of F when 2m is an odd integer, which is the case when there is a whole number of corrugations across a diameter. Oster & Riley (1952) state that F can be reduced to 'a complicated algebraic expression involving k, $2m\pi/R$, $J_0(kR)$, $J_1(kR)$ ', and from this expression appear to have inferred a maximum of F^2 at p = 1. The author has been unable to find such an expression; and to calculate F for 0 three series expansions have been derived,each suitable for calculation on a limited range. Further $it can be shown that a maximum of <math>F^2$ occurs near, but not at, p = 1. For 2m = 7 this maximum is at p = 1.038, and the value there of F^2 exceeds that at p = 1 by 38%.

We list these three series below, giving a rough guide to their appropriate ranges and the number of terms needed to obtain $\sim 1\%$ accuracy.

A. A series expansion of F(p), centred on p = 1 and convergent for all values of p. For 1% accuracy no more than 10 terms are needed in the range 1-1/(2m)

$$F = 2 \left[1 - \frac{1}{(m\pi)^2} \right]^{-1} \sum_{n=0}^{n=\infty} \frac{[m\pi(1-p^2)]^n}{n!} \cdot \frac{J_{n+2}(2m\pi)}{2n+3} \cdot \frac{J_{n+2}(2m\pi)}{2m+3} \cdot \frac{J_{n+2}(2m\pi)}{2n+3} \cdot \frac{J_{n+2}(2m\pi)}{2m+3} \cdot \frac{J_{$$

B. A series expansion of F(p), centred on p = 0 and convergent for p < 1. For 1% accuracy we can neglect terms of order p and higher, in the range 0 .

Woolfson, M. M. (1956). Acta Cryst. 9, 974.

$$\begin{split} F &= \frac{2}{1-p^2} \left[1 - \frac{1}{(m\pi)^2} \right]^{-1} \\ &\times \left\{ \frac{J_1(2m\pi p)}{2m\pi p} - \frac{1}{(2m\pi)^2} \left[1 + J_0(2m\pi p) \right. \\ &+ \left(\frac{p}{2} \right)^2 \left\{ 2 \left(1 + J_0(2m\pi p) \right) - 2J_2(2m\pi p) \right\} \dots \\ &+ \left(\frac{p}{2} \right)^n \left\{ {}^{2n}C_n (1 + J_0(2m\pi p)) - 2{}^{2n}C_{n-1}J_2(2m\pi p) \dots \\ &+ \left. \left. + \left(- \right)^n J_{2n}(2m\pi p) \right\} \right] \right\} \end{split}$$

C. An expansion asymptotic to F for large values of $p(1-p^2)$.

We give the leading terms of this expansion, these being sufficient to calculate F to $\sim 1\%$ accuracy in the ranges 1/(2m)

$$\begin{split} F &= \frac{2}{1-p^2} \bigg[1 - \frac{1}{(m\pi)^2} \bigg]^{-1} \Biggl\{ \frac{J_1(2m\pi p)}{2m\pi p} - \frac{1}{(2m\pi)^2} \bigg[\begin{array}{c} 0, \, p > 1 \, ; \\ (1-p^2)^{-\frac{1}{2}}, \, p < 1 \end{array} \bigg] \\ &- \frac{1}{(2m\pi)^2} \cdot \frac{(2m\pi p)^{-\frac{1}{2}}}{1-p^2} \cdot \left(\frac{2}{\pi} \right)^{\frac{1}{2}} \Biggl(\frac{\cos\left(2m\pi p - \frac{\pi}{4}\right) \cdot \left[1 - \frac{9 + 30\,p^2 + 345\,p^4}{2!\,[16m\pi p(1-p^2)]^2} + \cdots \right]}{+ \sin\left(2m\pi p - \frac{\pi}{4}\right) \cdot \left[\frac{1-9\,p^2}{16m\pi p(1-p^2)} - \frac{225 - 315\,p^2 - 17325\,p^4 - 28,665\,p^6}{3!\,[16m\pi p(1-p^2)]^3} \right]} \Biggr) \Biggr\}$$

In an interpretation of the scattering pattern of keratin, R.D.B. Fraser & T. McRae (Private communication) evaluated F^2 for 2m = 7 and p in the range $0.15 , using the series A and C. The graph of <math>F^2$ in this range is shown in Fig. 1.

Reference OSTER, G. & RILEY, D. P. (1952). Acta Cryst. 5, 272.

Acta Cryst. (1959). 12, 72

The unit-cell dimensions and space group of monoclinic NiSO₄.6H₂O. By D. JUNE SUTOR Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 23 September 1958)

Crystals of the green monoclinic hexahydrate of nickel sulphate, which is unstable at room temperature, were obtained by the slow evaporation of a cold mixture of solutions of disodium adenosine triphosphate and nickel sulphate whilst trying to crystallize a heavy atom salt of the nucleotide. The unit-cell dimensions of two different crystals, determined from rotation and Weissenberg photographs, are given in Table 1.

Table	1. Unit-cell dim	Unit-cell dimensions	
	Crystal 1	Crystal 2	
a (Å)	9.84	11.58	
b (Å)	7.17	6.09	
c (Å)	24.0	23.9	
β (°)	97.5	94.0	

The axial ratios of crystal 1 (1.372:1:3.347) agree with those quoted by Groth when the *c* axis of his crystal is doubled (1.3723:1:3.3526, $\beta = 98^{\circ}$ 15'). Crystal 1 is also isomorphous with the modification of MgSO₄.6 H₂O studied by Ide (1938), (*a* = 10.04, *b* = 7.15, *c* = 22.34 Å, $\beta = 98^{\circ}$ 34', space group given as C2/c). The measured density $2 \cdot 0 \pm 0 \cdot 1$ g.cm.⁻³ corresponds to the more accurate value $2 \cdot 036$ quoted in Groth; the calculated value for 8 molecules per unit cell is $2 \cdot 07$ for both crystals 1 and 2.

For both crystals reflexions hkl are absent when h+k is odd, but there are no other systematic lattice absences; the space group may thus be either C2/m, Cm or C2.

For crystal 1, the absence of peaks along the line z = 0in the 0kl sharpened Patterson projection precludes a mirror plane perpendicular to b, but the presence of peaks along y = 0 indicates a two-fold axis parallel to b; the space group is probably C2. Although there is no glideplane perpendicular to the diad axis, the 00l reflexions with l odd are absent, suggesting that the z coordinates of at least the nickel atoms are in accordance with the space group C2/c.

No further work on this compound is contemplated.

Reference

IDE, K. H. (1938). Naturwissenschaften, 26, 411.

